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Abstract
Explaining black-box models such as deep neural networks
is becoming increasingly important as it helps to boost trust
and debugging. Popular forms of explanations map the fea-
tures to a vector indicating their individual importance to a
decision on the instance-level. They can then be used to pre-
vent the model from learning the wrong bias in data possi-
bly due to ambiguity. For instance, Ross et al.’s “right for
the right reasons” propagates user explanations backwards to
the network by formulating differentiable constraints based
on input gradients. Unfortunately, input gradients as well as
many other widely used explanation methods form an approx-
imation of the decision boundary and assume the underlying
model to be fixed. Here, we demonstrate how to make use
of influence functions—a well known robust statistic—in the
constraints to correct the models behaviour more effectively.
Our empirical evidence demonstrates that this “right for bet-
ter reasons”(RBR) considerably reduces the time to correct
the classifier at training time and boosts the quality of expla-
nations at inference time compared to input gradients.

Introduction
Nowadays, with the success of deep neural networks, train-
ing a classifier to achieve high accuracy is relatively easy.
Even then, gaining trust from human is still difficult for
those models as the decision-making mechanism is often
non-transparent. Just because a machine learning model is
highly accurate on the given data does not mean it repre-
sents the correct mapping in that domain. Especially in high
dimensional, real-world domains, these “Clever Hans”-like
moments—making use of confounding factors within data
sets—are observable due to spurious artifacts, which could
be unwantedly learnt by the models.

More precisely, (Lapuschkin et al. 2019) reported that a
deep neural network trained on the PASCAL VOC 2007
data set (Everingham et al. 2007) focuses on image source
tags for classification, which only incidentally correlate with
the class labels. This ”Clever Hans”-like behavior (Sebeok
and Rosenthal 1981) happens when the model has learnt
the spurious artifact, also known as confounding factors.
In this case, the model’s underlying behavior is systemati-
cally wrong, and therefore may not generalize well to un-
seen data. Such systematic wrong behavior can be hard to
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spot and do real harm when applied in a real-world setting.
For instance, Obermeyer et al. (2019) demonstrated that a
widely-used commercial model for predicting medical needs
exhibits significant racial bias—black patients are consider-
ably sicker than white patients, at a given risk score. Ober-
meyer et al. attributed this to the fact that the model uses
medical expenses to predict medical needs, however, black
people have less access to medical care so that less medical
expenses are given to them compared to white people in the
same health condition. This racial bias in the model could
pose a real danger to black patients.

These concerns and issues about machine learning (ML)
models have motivated recent work in correcting the models
based on user explanations such as training the models to be
right for the right reasons (Ross, Hughes, and Doshi-Velez
2017). However, (Ross, Hughes, and Doshi-Velez 2017), as
well as other work of its kind, rely on explanations show-
ing how the prediction changes when the test point is per-
turbed (Simonyan, Vedaldi, and Zisserman 2013; Adler et al.
2018), assuming the model to be fixed. But how does the
model actually change when perturbing the training data?
This is answered well by the so-called influence function
(Cook and Weisberg 1980; Koh and Liang 2017), which ex-
plains a model’s predictions by tracing back to the training
process. Built upon Ross, Hughes, and Doshi-Velez’s “right
for the right reasons”, we therefore propose to improve its
effectiveness by leveraging the higher-order and robust ex-
planations due to influence functions.

Specifically, we make the following contributions:

• We propose the first interactive correction of (ML) mod-
els, called “right for better reasons” (RBR), based on in-
fluence functions.

• We improve the adversarial robustness of machine learn-
ing models by constraining the influence function.

• We demonstrate the effectiveness of RBR on both syn-
thetic and real-world data and compare it to RRR across a
number of data sets and model architectures.

To this end, we proceed as follows. We start off by reviewing
related work on explainable ML. Afterwards, we introduce
RBR. Before concluding, we present our empirical results.



Explainable Machine Learning
Explaining decisions of ML models has increasingly gained
attention as the black-box models’ opaqueness could under-
mine end-users’ trust (Adler et al. 2018), complicate debug-
ging the ML model (Shrikumar, Greenside, and Kundaje
2017), and potentially harm fairness or pose a safety haz-
ard in real-world use. However, explanations are a very gen-
eral concept and can take very different forms (Von Wright
2004). Essentially, explanations can be broken down into
two categories: global explanations and local explanations.
The former ones are conceived on the model level to extract
some general understanding of the model (Buciluǎ, Caruana,
and Niculescu-Mizil 2006; Bastani et al. 2017), while the
latter ones often refer to instance-level explanations, which
have arguably been extensively studied.

Consider e.g. LIME (Local Interpretable Model-agnostic
Explanations) (Ribeiro, Singh, and Guestrin 2016). LIME
takes samples at a local scope of the queried instance to ap-
proximate decision boundaries by a simplified linear model,
which is interpretable. This provides an explanation for each
instance. The main advantage of this explainer lies in its uni-
versal applicability. Its main drawback is that the process is
very slow and unstable due to its sampling sub-procedure.
Similar to LIME, input gradient (IG) (Baehrens et al. 2010;
Simonyan, Vedaldi, and Zisserman 2013) also approximates
decision boundaries with simplified local models. But this is
computed in closed form as follows:

IIG :=
∂

∂xnd

∑K

k=1
log(ŷnk)

for inputs X ∈ RN×D, labels y ∈ RN×K and outputs of
a differentiable model ŷ ∈ RN×K . This yields a relevance
score for each feature on each instance, which we refer to as
saliency maps. This statistic is much faster to compute com-
pared to LIME. Moreover, it passes the sanity check due to
Adebayo et al. (2018), who demonstrated that several ex-
planation methods are simply independent of the model pa-
rameters and, in turn, are not capable of generating faithful
explanations.

Inferring explanations takes one or multiple forward
passes of the network. Backpropagating supervised expla-
nations to the network has also been studied in recent works
to train networks that align with user explanations. This is
especially useful for preventing the models from inheriting
accidental bias in the data so that it also performs robustly
during test time when this bias is absent. Some research has
been done towards this end. Ross, Hughes, and Doshi-Velez
(2017) proposed to train models to be “right for the right
reasons” (RRR) by formulating constraints based on super-
vised explanations using input gradient and user feedback.
The constraints take a differentiable form and, hence, can be
imposed on classifiers using standard gradient-based meth-
ods. Ross, Hughes, and Doshi-Velez showed empirically the
effectiveness of RRR for training models to learn the right
rules by explicitly penalizing the wrong rules, especially in
the presence of bias in the data that confounds with pre-
diction targets. Teso and Kersting (2019) recently extended
the idea of RRR to a learner-agnostic setting. Rieger et al.
(2019) followed a similar scheme to RRR but adapted its

Figure 1: (Best viewed in color) Input Gradients (IG) ver-
sus Influence Function (IF) on two 2D data sets. From left
to right: data, vector fields of IG and IF as well as their
component-wise product, l2-norm of IG and IF vectors. As
one can see, IF integrates the different reasons for a decision
into a better explanation.

loss to contextual decompositions (CDs) (Murdoch, Liu, and
Yu 2018). In a similar spirit, Erion et al. (2019) proposed
to use expected gradients to encode explanations as prior
knowledge such as the smoothness over adjacent pixels in
the image domain. Related to this, Kim et al. (2019) unlearn
the target bias in a data set by minimizing the mutual infor-
mation between the transformed feature and the target bias.
In order to do that, they add two auxiliary networks, f and
h, for transforming features and predicting bias respectively,
other than the label-predicting network g. The task is to op-
timize all networks jointly so that f extracts features con-
taining no information of the target bias predicted by h, but
the labels predicted by g still achieves satisfying accuracy.

Right for Better Reasons (RBR)

Our “right for better reasons” loss is triggered by Kim
et al. (2019). However, they employ two auxiliary networks,
next to the classifier network, for transforming features and
predicting bias respectively. Doing so poses potentially a
great overhead and may complicate training. The approaches
of Ross, Hughes, and Doshi-Velez (2017), Rieger et al.
(2019) and Erion et al. (2019) propagate only supervised
explanations—coming from some external XAI module—
as constraints directly back to the model. None of them ex-
plains the predictions of a model explicitly through its learn-
ing algorithm and back to the training data. But how can we
then ensure that the explanation captures the model and the
learning process?

To answer this, we therefore ask, what would the expla-
nation look like if we did not have this training point, or
if the values of this training point were changed slightly?
To this end we adapt influence functions (Cook and Weis-
berg 1980; Koh and Liang 2017)—a classic technique from
robust statistics—for explanatory interactive ML (Teso and
Kersting 2019). They trace the models prediction through
the learning algorithm and back to its training data, where
the model parameters ultimately derive from, in a closed-
form.



Figure 2: (Best viewed in color) Feedback masks A for the
color data set penalizing rule 1 (Left) and 2 (Middle) respec-
tively, and feedback on the decoyed color data set (Right).

Explanations via Influence functions. An influence
function takes the following form:

I(z, ztest)
T
IF := −∇θL(ztest, θ̂)

TH−1

θ̂
∇x∇θL(z, θ̂)

where z and ztest are a training sample and a test sample
respectively, L denotes the loss, x the input, θ the model
parameters and H := 1/n

∑n
i=1∇2

θL(zi, θ̂) the Hessian.
I(z, ztest)

T
IF indicates the most influential direction of per-

turbing z for ztest, and the features of z in this direction ex-
plains why the prediction on ztest is made. Using just

I(z, θ)TIF := H−1

θ̂
∇x∇θL(z, θ̂)

computes the influence of z to θ based on the second-order
approximation of the empirical loss around θ. Generally,
H−1

θ̂
provides the curvature information of the parameter

space and offers a better local approximation of the loss
compared to input gradient, and ∇x∇θL(z, θ̂) points to the
direction in which perturbing the training point z leads to
most significant model update. Since we are mainly inter-
ested in the latter information, we replace H−1

θ̂
by the iden-

tity matrix and, hence, propose the sum of ∇x∇θL(z, θ̂) as
a more robust statistics for explanatory interactive ML.

To illustrate this, consider Fig. 1. It gives some insights
and intuitions on IG-generated explanations (IIG), and IF �
IG-generated explanations (ITIF � IIG) by visualizing their
vector fields and l2-norm generated by a three-layer MLP
on some synthetic two-dimensional classification data sets.
As Ross and Doshi-Velez (2018) noted, input gradients are
sometimes noisy and not interpretable on their own. One can
see that the vector field of IF� IG is sharper around decision
boundaries, while IGs yield quite blurry and noisy explana-
tions over the whole domain. Since the decision boundary
describes the model’s behavior, having a less noisy and am-
biguous decision boundary yields a better description of the
model.

The RBR Loss Function. We now leverage the more ro-
bust statistics and formulate the constraints on the explana-
tions to make the model right for better reasons (RBR). That
is, we use information from the influence function (IF) to
compute saliency maps of features and penalize features ac-
cording to feedback using standard gradient-based methods.
Note that the term RBR is used interchangeably with “IF-
constrained” and “IF feedback” in the following, and the
term RRR is used interchangeably with “IG-constrained”
and “IG feedback”.

Figure 3: Accuracies of the vanilla model, RRR and RBR on
adversarial examples with increasing perturbations ε.

To this end, we define the loss function as a weighted sum
of the right answer loss (cross-entropy), the right reason loss
(user feedback on saliency map) and L2 regularization:

L(θ,X, y,A) =
1

N

∑N

n=1

∑K

k=1
−ynk log(ŷnk)︸ ︷︷ ︸

right answers

+ λ
∑N

n=1

∑D

d=1
(AndI(z, θ)

T
IFnd

IIGnd
)2︸ ︷︷ ︸

right reasons

+
∑

i
θ2i︸ ︷︷ ︸

regularization

(1)

where A ∈ {−1, 0, 1}N×D encodes the user feedback and
can be seen as a mask. See Fig. 2 for an illustration on the
color data set described in the experimental section. For this
data set we did not use -1 in the feedback, but only 0 and 1. λ
controls the balance between the right reasons and the right
answers. This loss poses bias towards the features annotated
as −1s, against the features annotated as 1s and ignores the
rest. We note that one should be mindful of the faithfulness
of the saliency map when formulating right reason loss. This
is because plugging in an unfaithful saliency map may lead
to non-convergence. We use the influence of z on the model
parameters, I(z, θ)TIF, as a measure to approximate the rele-
vance of each feature of z on the model, because we do not
have access to the test set at training time.

Formulating constraints on the decision boundary this
way is more efficient than using input gradients, cf. Fig. 1.
And this indeed turns out to provide faster correction to the
model compared to RRR as the user feedback is formulated
in a more robust form, i.e. IF� IG. Besides, we demonstrate
that the model gains more generalization ability and adver-
sarial robustness across multiple data sets in our empirical
evaluation. At last, we showcase the effectiveness of RBR
in high-dimensional domains.

Empirical Evaluations
Our intention here is to investigate the following questions
empirically: (Q1) Does RBR regularization help to improve
adversarial robustness? (Q2) Do classifiers learn the right
rules when using RBR? (Q3) Does RBR help to converge
faster than RRR? (Q4) How effective is RBR in high-
dimensional domains? To this end, we ran experiments on



Figure 4: (Best viewed in color) Color data set—corner pix-
els: IF and IG explanations after penalizing the corner pixels
with IF and IG respectively. White dots denote the salient
features.

a Linux machine with two Intel Xeon processors with 56
hyper-threaded cores, 4 NVDIA GeForce GTX 1080 under
Ubuntu Linux 14.04. All the models were implemented in
Python and Tensorflow. The experiments on the high dimen-
sional domains (in (Q4)) were run on GPUs, the rest exper-
iments were run on CPUs. The hyperparmeter for RBR and
the baseline are both chosen based on the magnitude of the
right reason loss and the right answer loss.

(Q1) Adversarial robustness. For a start, we investigated
whether RBR can improve the adversarial robustness of a
model. To this end, we trained an eight-layer MLP as the
classifier on the toy color data set from (Ross, Hughes, and
Doshi-Velez 2017) and MNIST (LeCun 1998) by directly
constraining IFs. The toy color data set entails two indepen-
dent rules: (1) four corner pixels are the same and (2) top
middle three pixels are different. Samples satisfying both
rules belong to class 1, and samples satisfying neither belong
to class 2. These two class of samples constitute the whole
data set. Each rule alone is sufficient to infer the class label.
For this experiment, we set A in the loss function 1 to be
an all-ones matrix instead of biased feedback. As baseline, a
vanilla classifier trained without any form of constraint and
a classifier trained with RRR were used. Grid search was
done to select the best hyperparameters. Here, the hyperpa-
rameter λ for RBR and RRR is respectively 1e+8 and 1e+3
on MNIST, 1e-9 and 1e-4 on toy colors. To generate adver-
sarial examples, we applied the scheme of the Fast Gradi-
ent Sign Method (FGSM) (Goodfellow, Shlens, and Szegedy
2015) but replaced the gradient with the influence function.
As one can see in Fig. 3, the accuracy of RBR model drops
only very slightly when perturbation on the input increases,
while RRR and the vanilla model deteriorate significantly.
This shows that RBR model is much more robust to adver-
sarial perturbations on both data sets compared to the vanilla
and the RRR model. This answers (Q1) affirmatively.

Figure 5: (Best viewed in color) Color data set—top mid-
dle pixels: IF and IG explanations after penalizing the top
middle three pixels with IF and IG respectively. White dots
denote the salient features.

(Q2) The model learns the right rules. However, if we
give biased feedback, does it yield models with the right
rules? In order to investigate this, we again use the toy color
data set. The user feedback for constraining each rule is
shown in Fig. 2 (Left, Middle).

On the toy color data set we trained a MLP penalizing
each rule where each feedback is formulated using IG, i.e.,
with RRR, and using IFs, i.e., with RBR. λ for RBR and
RRR is respectively 10 and 0.1. Figs. 4 and 5 show the ex-
planations across a few test set examples for each of these
models. The salient features of each model on each exam-
ple are induced by IG and IF respectively and are denoted
as white dots on 25 randomly selected test samples. One can
see that the model focuses on rule 2 when rule 1 is penalized,
and vice versa. Also, RBR forces the model to learn better
rules than RRR, as the explanations of the IG-constrained
models on some samples either did not recognize the right
rule or did not recognize the complete rule.

Additionally, we investigated the decoyed MNIST data
set from (Ross, Hughes, and Doshi-Velez 2017). This data
set adds grey patches to the baseline MNIST in randomly
selected corners, whose shades are functions of the label in
training set but random in test set. On this data set, the feed-
back annotates every feature confounded with a grey patch
as one. And we run another experiment with similar setups.
Fig. 6 illustrates the explanations of resp. IF and IG after
training without constraint, with RRR and with RBR. One
can see that the vanilla classifier mainly uses the confound-
ing features to make predictions, but after training with user
feedback the salient regions focus more on the digits. The ef-
fect of RBR is as appealing as RRR. Besides, IFs yield less
noisy explanations compared to the explanations of IGs, as
already mentioned above.

Hence, the question whether RBR makes the model learn
the right and even better rules can be answered affirmatively.
Thus, (Q2) can also be answered affirmatively.
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Figure 6: (Best viewed in color) IF and IG explanations on
some randomly selected samples from models resp. trained
without constraint, with RRR and RBR.

(Q3) Convergence speed. We compared the convergence
speed in presence of confounding factors. As confounded
data sets, we used the decoyed MNIST data set and also con-
structed another data set by using the toy color data set as
baseline and intentionally adding a patch at a random loca-
tion to the training images, whose color is determined by the
label. The feedback on the decoyed color data set provided
annotation of ones on all the pixels that are not relevant for
the two decision rules, cf. Fig. 2(Right). The feedback on the
decoyed MNIST data set is the same as in (Q2).

On each data set we trained three MLPs using no feed-
back, IG feedback (RRR) and IF feedback (RBR). λ for
RBR and RRR is respectively 1e-3 and 10 on MNIST, 0.1
and 0.01 on toy colors. The cross-entropy and accuracy on
the test set reflects how well the model generalizes to un-
seen data. They are shown over the training epochs in Fig. 7.
Without any user feedback, we observed an accuracy of
100% on both training sets. But on the test set, the cross-
entropy is surging and the accuracy dropping to random,
suggesting that the model overfits to the confounding factor
and does not generalize at all. Providing IF feedback pre-
vents the classifier from learning the confounding rules since
the decreasing cross-entropy and improved accuracy on the
test set implies the model is able to generalize. Moreover, the
convergence speed is much faster compared to RRR. Over-
all, the end2end running time was not affected much by the
overhead of computing IF. On decoy MNIST, IG took 7 min-
utes, while IF took 9 minutes. This answers (Q3) affirma-
tively.

(Q4) Effectiveness in the high-dimensional domain. Fi-
nally, we illustrate the effectiveness of RBR in real-world
tasks.

Explanatory Interactive PASCAL VOC 2007. Our first
experiment used the PASCAL VOC 2007 benchmark (Ev-
eringham et al. 2007), consisting of labeled images from

Figure 7: Loss (left column) and accuracy (right column) of
the classifier on test set when training respectively on de-
coyed toy color data (top row) and decoyed MNIST (bottom
row) with resp. no constraints, IG constraints and IF con-
straints.

twenty object classes in realistic scenes. The goal is to cor-
rect the ”Clever Hans”-like moments. Specifically, we con-
sidered only two object classes, horse and dog, and used
VGG-16 (Simonyan and Zisserman 2015) as a classifier net-
work. For optimization we fine tuned the initial weights pre-
trained on ImageNet. Performance is measured by the bal-
anced accuracy score defined as the average of recall ob-
tained on each class. Without user feedback on the expla-
nations (vanilla model), our fine-tuned classifier reached a
training accuracy of 99% and test accuracy of 87%. Apply-
ing input gradients across test set, we observed, as illustrated
by the saliency maps in Fig. 8 (second row), that VGG-16
often unwantedly focuses on the source tags to make predic-
tions, confirming (Lapuschkin et al. 2019).

To revise VGG-16, our feedback to VGG-16 was to avoid
the source tags as salient features, as illustrated in Fig. 10
(Left). We train a RBR and a RRR respectively with λ equals
1e+7 and 1. Fig. 8 shows a few examples and their saliency
maps from different models. As one can clearly see, VGG-
16 decisions are based on the source tag without any revision
(second row). But with RBR, the model does not focus on
the features in the bottom left corner any more, instead the
salient features overlap more with the horse or its rider. Al-
though with RRR, the source tags are also not salient any
more, but the salient regions are overlapping very few with
the target object. One may argue that the rider could also
be an confounding factor in this case and a dog image with
a rider on it, imaginary, may therefore be categorized as a
horse. We leave this out of consideration here and focus on
removing one certain confounding factor which is the source
tags.

Explanatory Interactive Deep Plant Phenotyping. To
investigate RBR on a scientific task, we considered a phe-
notyping task on data acquired from plant physiologists. It
consists of RGB images of leaf tissues on a nutrition so-
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Figure 8: (Best viewed in color) Revising VGG-16 on PAS-
CAL VOC 2007. Horse images (first row), their saliency
maps on vanilla model (second row), and their saliency maps
on RRR (third row) and RBR (last row).

lution labeled as healthy or Cercospora-inoculated. Using
the same experimental setup as for PASCAL VOC 2007, the
fine-tuned VGG-16 reached an accuracy of 82% on test set.
Inspecting its predictions using saliency maps, we found that
VGG-16 showed again a “Clever Hans”-like moment. It un-
desirably often looks at the border of the background, specif-
ically on the nutrition solution, or irrelevant part of the leaf
tissue to make inferences. These are biologically not plausi-
ble.

We acquired annotations of the background and ran an-
other experiment with similar setups on PASCAL VOC
2007. The counter examples here were test set instances with
randomized background, and the random examples were test
set instances with randomized leaf tissue.

We then revised VGG-16 by providing constraints on the
background, penalizing its relevance. Using the same con-
straints we trained RRR and RBR respectively with λ equals
1e-3 and 1e-4. Fig. 9 shows some examples from the test
set and their saliency maps with no user correction (second
row), RRR correction (third row) and RBR correction (last
row). As one can see, (1) before the human interacts with
VGG-16 through its explanations, VGG-16 often looked at
the border of the background to make predictions, although
a clearly visible sick spot is present. (2) After interacting
through the explanations via RBR, VGG-16 learns to look
at the sick spot to classify. (3) The explanations before RBR
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Figure 9: Plant examples (with zooms on biologically plau-
sible reasons, yellow boxes) and their saliency maps before
and after correction. As one case see, RBR revises the clas-
sifier to focus on the biologically plausible reasons, namely,
on the leaves instead of the tissue.

are complex and hardly make sense to a plant physiologist.
In contrast, revising the model via RBR poses a constraint
and makes the explanations more simple, concise, and bi-
ologically plausible. 4) Although RRR also induced more
concise saliency maps, the salient features did not always
land on the obvious sick spot.

Quantitative Comparison. To measure the effectiveness
of this correction quantitatively, we randomized respectively
the user-annotated unsalient features and all the rest fea-
tures (possibly salient or unannotated) across the whole test
set. We call the samples with randomized unsalient features
“counter examples”, and the samples with randomized rest
features as “random examples”. Intuitively, if a classifier is
right for the right reasons, the accuracy on the counter ex-
amples should be high because the randomization only in-
fluenced the uninformative features. On the contrary, the ac-
curacy on the random examples should be low because the
randomization destroyed valuable information in the salient
features. The empirical results are summarized in Tab. 1. It
shows the (balanced) accuracy of counter examples and ran-
dom examples on PASCAL VOC 2007 and the deep plant
dataset, with and without user feedback. As one can see
for PASCAL VOC 2007, without any correction, by only
looking at the source tag, the classifier achieves higher ac-



Figure 10: (Best viewed in color) User feedback on PAS-
CAL VOC 2007 (Top) and the plant phenotyping data set
(Bottom). Shown are the original images overlaid with user-
annotated mask (dark overlay denote 1s in the mask and the
rest are −1s) as well as randomized version.

curacy (74%) than by looking at the target object (71%).
That is, the user-annotated unsalient features are more in-
formative for the classifier than the user-annotated salient
features. Fortunately, this “Clever Hans”-like moment can
be revised by penalizing unsalient features based on human
feedback: Via RBR, the model takes more information from
the user-annotated salient features because the accuracy on
the counter examples (84%) is higher than on the random ex-
amples. Although with RRR, similar pattern can be seen, but
the accuracy for RRR is lower than the accuracy for RBR.

As for the deep plant dataset, this “Clever Hans”-like mo-
ment is more prominent: the accuracy is much higher by
looking at the background (70%) than by looking at the leaf
tissue (50%). That means, although VGG-16 converged to
87% accuracy on test set, it did not converge to a biolog-
ically plausible strategy. After correction, the performance
dropped to almost prior distribution (51%) by only looking
at the background, while the relevance of the leaf tissue in-
creased considerably—the accuracy increased from 51% to
62% on the counter examples. With RRR, although the accu-
racy on the random examples dropped to 54%, the accuracy
on the counter examples increased only to 54%. That implies
the leaf tissue and the background are same informative to
the classifier.

As a conclusion of this experiment, human feedback with
RBR can help to considerably boost the performance of
VGG-16. Both experiments on real-world datasets together
demonstrate the practical use of user feedback via IFs in
high-dimensional domains. This answers (Q4) affirmatively.

Conclusions and Future work
We proposed to use influence functions to encode user feed-
back in a robust form to avoid ML models from learning the
wrong decision rule. We have shown that using robust user
feedback can constrain classifiers better to learn the right
rules in comparison to using only input gradients. Actually,

Vanilla RRR RBR

PASCAL VOC 2007
counter

examples 71% 81% 84%

random
examples 74% 65% 76%

deep plant
counter

examples 50% 54% 62%

random
examples 70% 54% 51%

Table 1: Accuracies of three models on counter examples
and random examples experimented respectively on PAS-
CAL VOC 2007 and the deep plant dataset.

they improve the generalization ability of the model. Addi-
tionally, training to learn the right reasons required fewer
epochs using RBR compared to RRR, while the overall run
time stays on the same scale.

Our work provides many interesting avenues for future
work. An interesting step would be to actually put humans
into the training loop and let them correct the model online
and interactively, rather than running simulated experiments
as done here. Moreover, approximations to influence func-
tions are known to still provide valuable information even on
non-convex and non-differentiable models (Koh and Liang
2017). One should investigate RBR for this case. In general,
not only learning but also model explanations should be in-
teractive and not be just, say, a fixed heatmap, since there is
great value in communication between the model, the expla-
nations and the human. Additionally, our current work can
not account for more complex user feedback, such as “color
is not relevant for this classification”. So one should also
consider more complex feedback from the user’s side. Fi-
nally, our “right for better reasons” approach may be of use
in solving related problems, e.g., in maintaining robustness,
fairness, accountability, transparency, and moral biases.
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