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Abstract
While probabilistic programming is a powerful
tool, uncertainty is not always of a probabilistic
kind. Some types of uncertainty are better captured
using ranking theory, which is an alternative to
probability theory where uncertainty is measured
using degrees of surprise on the integer scale from
0 to ∞. In this paper we combine probabilistic
programming methodology with ranking theory
and develop a ranked programming language. We
use the Scheme programming language a basis and
extend it with the ability to express both normal
and exceptional behaviour of a model, and perform
inference on such models. Like probabilistic
programming, our approach provides a simple and
flexible way to represent and reason with models
involving uncertainty, but using a coarser grained
and computationally simpler kind of uncertainty.

1 Introduction
Probabilistic programming languages (PPLs) are regular pro-
gramming languages extended with statements to express
probabilistic behaviour and to process evidence via condi-
tionalization. Mixing such statements with regular program-
ming constructs enables one to easily and flexibly build com-
plex probabilistic models and perform inference on them.
Examples of PPLs are Church, Venture, Figaro, Anglican
and Stan [Goodman et al., 2008; Mansinghka et al., 2014;
Pfeffer, 2009; Carpenter et al., 2017; Wood et al., 2014].

While PPLs are powerful tools, the approach assumes that
the uncertainty we are dealing with is probabilistic. How-
ever, some situations involve uncertainty of a different na-
ture [Halpern, 2017]. In this paper we focus on situations
where we can distinguish normal from exceptional behaviour
but where the probabilistic meaning of these terms is un-
known or irrelevant. For example, in fault diagnosis all we
may know is that components normally work and only excep-
tionally fail, or if we process sensor data or user input, each
piece of data is normally correct but exceptionally wrong.

Ranking theory [Spohn, 2014] is an alternative to proba-
bility theory in which uncertainty is measured on the integer
scale from 0 to ∞. These values, called ranks, can be un-
derstood as degrees of surprise: 0 for not surprising, 1 for

surprising, 2 for even more surprising, and so on, with ∞
for impossible. Such a scale is a good fit for the kind of
uncertainty outlined above: normal means rank 0, while ex-
ceptional means rank ≥ 1. Even though ranks behave quite
differently from probabilities, there are many similarities be-
tween the two. For example, ranking functions—like proba-
bility functions—are updated by conditionalization, and can
be represented compactly by exploiting conditional indepen-
dencies encoded by graph structures.

In this paper we apply the methodology of PPLs to ranking
theory, and develop a ranked programming language. It is
based on the Scheme programming language [Dybvig, 2009],
which is a dialect of LISP, and we call it Ranked Scheme. Un-
certainty in Ranked Scheme is expressed with ranked choice
expressions, which normally (rank 0) return a value X but
exceptionally (rank ≥ 1) another value Y . Expressions in
Ranked Scheme return ranking functions over their return
values. The rank of a return value can be understood as its
degree of surprise or, alternatively, as the number of excep-
tions that must occur in order to arrive at that return value. Fi-
nally, evidence is processed with observe expressions, which
capture the ranking-theoretic conditionalization operation.

The idea of ranked programming was introduced in [Rien-
stra, 2017], which discusses a minimal imperative ranked
programming language. The current approach has a sim-
pler semantics, is easier to implement, and is significantly
more powerful since it permits mixing ranked programming
with regular Scheme code. An implementation was devel-
oped using the Racket Scheme dialect as a basis. For down-
load and instructions see https://pkgd.racket-lang.org/pkgn/
package/ranked-programming.

This paper is structured as follows. In section 2 we present
the necessary basics of ranking theory, along with a short dis-
cussion of how ranks behave compared to probabilities. We
then present in section 3 the Ranked Scheme language. It
consists of a small set of special expressions whose seman-
tics is presented in a denotational style. We then discuss is-
sues related to the implementation in section 4. Section 5 is
dedicated to examples and we conclude in section 6.

2 Ranking Theory
We start with the necessary basics conerning ranking theory.
A ranking function over a set Ω of possible worlds is a func-
tion κ : Ω → N ∪ {∞} such that κ(w) = 0 for at least one
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w ∈ Ω. Thus, each possible worldw is associated with a non-
negative integer or∞. These values, called ranks, represent
degrees of surprise: 0 for not surprising, 1 for surprising, 2
for more surprising, and so on, with∞ indicating impossibil-
ity. A ranking function is extended to a function over events
(subsets of Ω, which we denote by A or B) as follows.

κ(A) =

{
min({κ(w) | w ∈ A}) if A 6= ∅,
∞ if A = ∅. (1)

Like conditional probabilities, conditional ranks are ranks
given that some event holds. The conditional rank of a possi-
ble world w given B (for κ(B) < ∞) is defined as follows.

κ(w | B) =

{
κ(w)− κ(B) if w ∈ B,
∞ if w 6∈ B. (2)

Combining this with (1) yields the definition for conditional
ranks of events:

κ(A | B) =

{
min({κ(w | B) | w ∈ A}) if A 6= ∅,
∞ if A = ∅, (3)

which is equivalent to

κ(A | B) = κ(B ∩A)− κ(B). (4)

To see how ranks behave compared to probabilities, the fol-
lowing rule of thumb applies: rank 0 plays the role of prob-
ability 1, rank ∞ plays the role of probability 0, and min,
− and + play the role, respectively, of +, ÷ and ×. Recall,
for example, the probabilistic axiom P (A ∩ B) = P (B |
A)P (A). By contrast, rewriting (4) yields κ(A∩B) = κ(B |
A) + κ(A) or, in words, the degree of surprise of A and B
equals that of B given A plus that of A. Similarly, the ax-
iom P (A) + P (Ω \ A) = 1 corresponds in ranking theory
to min(κ(A), κ(Ω \ A)) = 0 or, in words, an event and its
complement cannot both be surprising. For further details we
refer the reader to [Spohn, 2009] or [Spohn, 2014].

3 Ranked Scheme
Ranked Scheme is an extension of the Scheme programming
language. We assume in this paper that the reader is familiar
with the basics of Scheme (see, e.g., [Dybvig, 2009] for an
introduction). The extension consists of a small set of special
expressions called R-expressions, which generate and manip-
ulate ranking functions over values. Formally, let V denote
the set of all Scheme values (booleans, integers, strings, list
structures, procedure objects, etc). While a regular Scheme
expression returns a member of V, an R-expressions returns
a ranking function over V. The core R-expression types are:

• !x (Truth)
• (nrm κ1 exc r κ2) (Ranked Choice)
• (observe p κ) (Observation)
• ($ κ1 . . . κn) (Ranked Procedure Call)

Here, the symbols x, r, p and κ are parameters. The sym-
bol used furthermore specifies the expected type: x for ar-
bitrary members of V; r for ranks (non-negative integers or
∞); p for predicates (one-argument functions returning true

or false); and κ for ranking functions over V. Ranking func-
tions over V may be represented by lazily-linked list struc-
tures (see section 4) and may therefore technically also be
members of V. However, for the formal semantics, which is
the topic of this section, their representation is irrelevant.

We define the semantics of R-expressions in a denotational
style, by defining a function D that maps each R-expression
exp to a ranking function DJexpK over V. Intuitively, this
ranking function captures the uncertainty about the return
value of exp. That is, DJexpK(v) is the degree of surprise
that exp returns v or, alternatively, the number of exceptional
events that must take place for exp to return v.

3.1 Truth
The truth expression !x captures a value that equals x with
absolute certainty. It produces a ranking function according
to which x is ranked 0 and all other values are ranked∞:

DJ!xK(v) =

{
0 if x evaluates to v,
∞ otherwise.

3.2 Ranked Choice
The ranked choice expression (nrm κ1 exc r κ2) ex-
presses uncertainty. Intuitively, it normally yields the value
captured by κ1, and exceptionally (rank r) the value captured
by κ2. It evaluates to a ranking function in which the rank of
a value v is the minimum among κ1(v) and κ2(v) + r:
DJ(nrm κ1 exc r κ2)K(v) = min(κ1(v), κ2(v) + r).

Clearly, if κ1 and κ2 are ranking functions then so is
DJ(nrm κ1 exc r κ2)K. Setting r to 1 means that κ2 is
simply exceptional, while a value exceeding 1 can be under-
stood as saying that κ2 counts as multiple exceptional events.
Setting r to 0 means that κ1 and κ2 are equally surprising.
For this case we define the following syntactic shortcut:
DJ(either κ1 or κ2)K = DJ(nrm κ1 exc 0 κ2)K.
Below we indicate with => that the preceding expression re-
turns the ranking function that follows, displayed in tabular
form from lowest to highest rank, omitting rank∞.
(nrm !"foo" exc 1 !"bar")
=> Rank Value

0 "foo"
1 "bar"

(nrm !"foo" exc 1 (either !"bar" or !"baz"))
=> Rank Value

0 "foo"
1 "bar"
1 "baz"

Below we first define the recursive function (fun x) that
normally returns x and exceptionally (fun (* x 2)).
We then call (fun 1).
(define (fun x) (nrm !x exc 1 (fun (* x 2))))
(fun 1)
=> Rank Value

0 1
1 2
2 4
3 8
... ...

Note that the ranking returned here assigns finite ranks to an
infinite number of values (all powers of two). We use dots to
indicate that the displayed ranking function is truncated.



3.3 Observation
The expression (observe p κ) captures the ranking-
theoretic conditionalization operation. Here, κ is the value
of interest and p is the predicate on which we condition-
alize. This predicate is any one-argument function p such
that (p v) evaluates to either true or false, represented in
Scheme by the symbols #T and #F. Let (p v)⇒ #T denote
the fact that (p v) evaluates to #T and let [p] denote the set
{v ∈ V | (p v)⇒ #T}. The semantics of observe is de-
scribed by the following rule (note the resemblance with (2)):

DJ(observe p κ)K(v) =

{
κ(v)− κ([p]) if v ∈ [p],

∞ if v 6∈ [p].

It can be checked that, if κ is a ranking function, then so is
DJ(observe p κ)K, provided that κ([p]) < ∞. Thus, κ
must assign a finite rank to at least one value such that (p v)
evaluates to #T. For simplicity, we assume that p is chosen so
that this holds. Alternatively, the semantics can be extended
with values denoting failure of computation. To keep the def-
initions simple, we shall not pursue this option.

In the following example, fun is as defined in section 3.2
and (lambda (x) (> x 100)) defines a predicate that
returns true only for values greater than 100.
(observe (lambda (x) (> x 100)) (fun 1))
=> Rank Value

0 128
1 256
2 512
... ...

3.4 Ranked Procedure Call
The ranked procedure call ($ κ1 . . . κn) (with n ≥ 1)
generalises the regular procedure call in Scheme. Recall
that a regular procedure call is an expression (x1 . . . xn)
that, when evaluated, calls the procedure x1 with arguments
x2, . . . ,xn and returns the result. In a ranked procedure call
($ κ1 . . . κn), κ1 is a ranking function over procedures
and κ2, . . . , κn are ranking functions over arguments for the
procedure call. Let (v1 . . . vn) ⇒ v denote the fact that
the regular procedure call (v1 . . . vn) evaluates to v. The
semantics of the ranked procedure call is defined by:

DJ($ κ1 . . . κn)K(v) = min({
∑n

i=1κi(vi) |
(v1, . . . , vn) ∈ Vn,(v1 . . . vn)⇒ v}).

In words we can describe the semantics of $ as follows: if
there is a sequence v1 . . . vn of values such that the regular
procedure call (v1 . . . vn) evaluates to v, then ($ κ1 . . . κn)
yields v with rank

∑n
i=1 κi(vi), unless another sequence

v′1, . . . , v
′
n yields a lower rank for v using the same rule.

In the example below we calculate the sum of two values,
the first being normally 10 and exceptionally 20, and the sec-
ond one is simply 5. Recall that the symbol + in Scheme is
nothing but a variable bound to a procedure object. There-
fore, !+ evaluates to a ranking function assigning rank 0 to
the procedure object +, and rank∞ to all other values.
($ !+ (nrm !10 exc 1 !20) !5)
=> Rank Value

0 15
1 25

Let us extend this example by adding uncertainty about the
operation: we normally add but exceptionally subtract.
($ (nrm !+ exc 1 !-) (nrm !10 exc 1 !20) !5)
=> Rank Value

0 15
1 25
1 5

3.5 Ranked Let
An example: let b and p be boolean variables standing for
beer and peanuts. We only exceptionally drink beer, and
thus b becomes (nrm !#F exc 1 !#T). However, our
peanut consumption depends on whether we drink beer: if
we do, we normally have peanuts, otherwise we don’t. Thus,
p becomes (if b (nrm !#T exc 1 !#F) !#F). We
can already express such a dependency using anonymous
lambda functions and by relying on Scheme’s lexical scop-
ing. The resulting expression is rather cumbersome, though:
($ (lambda (b)
($ (lambda (p) (list "beer:" b "peanuts:" p))

(if b (nrm !#T exc 1 !#F) !#F)))
(nrm !#F exc 1 !#T))

=> Rank Value
0 (beer: #F peanuts: #F)
1 (beer: #T peanuts: #T)
2 (beer: #T peanuts: #F)

The ranked let expression generalises the let* expression in
Scheme and provides a simpler syntax.1 Its general form is

(rlet* ((v1 exp1) . . .(vn expn)) body) (5)

where body is any Scheme expression, each vi is a vari-
able, and each expi an expression that must return a ranking
function. Each variable vi will take on a value from the rank-
ing function returned by expi. We can express dependen-
cies because each expi may refer to the preceding variables
v1, . . . ,vi−1. Finally, bodymay refer to all variables, and its
value is returned with a rank that equals the sum of the ranks
of each vi. We can express the scenario above as follows.
(rlet*
((b (nrm !#F exc 1 !#T))
(p (if b (nrm !#T exc 1 !#F) !#F)))
(list "beer:" b "peanuts:" p))
=> Rank Value

0 (beer: #F peanuts: #F)
1 (beer: #T peanuts: #T)
2 (beer: #T peanuts: #F)

We define the semantics of ranked let with a rule that specifies
how (5) is recursively rewritten into another expression. This
rule is as follows. Consider the general form (5).
• If n > 1 then the general form is rewritten into:

($ (lambda (v1)

(rlet* ((v2 exp2) . . .(vn expn)) body))

exp1).

• If n = 1 then the general form is rewritten into:
($ (lambda (v1) body) exp1).

Note that this rule is equivalent to the macro definition of
let* in Scheme, with ranked procedure application substi-
tuted for regular procedure application [Abelson et al., 1998].

1let and letrec in Scheme can be generalised similarly.



∞ -

1 "baz"

1 "bar"

0 "foo"

Figure 1: A ranking function as lazily-linked list. Each dot repre-
sents a promise returning the triple it points to.

4 Implementation
Semantically, every R-expression maps to a ranking function
over V. It is clear that, when computing this ranking function,
we only have to compute ranks of finitely-ranked values. The
remaining values, which are typically infinite in number, are
then assumed to have rank∞. But the set of finitely-ranked
values may also be infinite (see e.g. the expression (fun 1)
discussed in section 3.2). Moreover, even in the finite case,
we are often only interested in values up to a given rank, since
these represent the “most normal” behaviour of a program. A
solution is to compute return values one by one, in increasing
order with respect to rank. We can then stop once we are
satisfied, like after having computed all rank 0 return values,
and infinite sets of finitely-ranked values pose no problem.
We call this a least-surprising-first execution strategy.

One way to achieve this is by representing ranking func-
tions using lazily-linked lists constructed using promise ob-
jects. A promise in Scheme is constructed with the expres-
sion (delay exp) and captures the delayed evaluation of
exp. If p is bound to the promise (delay exp) then
(force p) returns whatever exp returns, but exp is eval-
uated only after (force p) is called, and only once, i.e.,
subsequent calls return memoised values. A ranking func-
tion can then be represented by a promise that returns a triple
(x r next), where x is a value, r its rank, and next is
a promise returning another triple with a rank no less than r.
A triple with rank ∞ marks the end of the list and its value
can be ignored. Figure 1 shows how the ranking function in
the first example in section 3.2 is represented. Using this ap-
proach, which forms the basis for the implementation referred
to in the introduction, a return value with rank n is computed
only after all rank n− 1 return values have been computed.

5 Examples
We now demonstrate our approach by discussing a number of
example problems implemented using Ranked Scheme.

5.1 A Ranking Network
Bayesian networks are compact representations of probability
distributions by means of directed acyclic graphs and condi-
tional probability tables (CPTs) [Pearl, 2014]. The equivalent
in the ranking-based setting is called a ranking network (or
sometimes an OCF network) [Goldszmidt and Pearl, 1996;
Benferhat and Tabia, 2010]. Figure 2 depicts a ranking net-
work for a car diagnosis scenario (taken from [Eichhorn,
2018]) that consists of four boolean variablesH , B, F and S.
The tables encode, like CPTs do for conditional probabilities,
conditional rankings for each variable. The rank of a com-
plete assignment of variables can be obtained by summing up
the matching entries in the tables (as opposed to multiplying

S

B F

H
H κ(H)
#T 15
#F 0

F κ(F )
#T 0
#F 10

H B κ(B|H)
#T 4

#T
#F 0
#T 0

#F
#F 8

B F S κ(S|B,F )
#T 0

#T #T
#F 3
#T 13

#T #F
#F 0
#T 11

#F #T
#F 0
#T 27

#F #F
#F 0

Figure 2: A ranking network with variables H (headlight was left
on), B (battery charged), F (full tank) and S (car starts).

them, as done in the probabilistic case). For example, the rank
of H=#F, B=#T, F=#F, S=#F is 10 since κ(H=#F) +
k(B=#T|H=#F) + k(F=#F) + k(S=#F|B=#F,F=#F) = 10.

The function network defined below represents the net-
work from Figure 2. The construction is based on a ranked
let expression that sets each variable conditional on its par-
ents and returns a ranking function over lists containing the
values of the variables H , B, F and S.
(define (network)
(rlet*
((H (nrm !#F exc 15 !#T))
(B (if H (nrm !#F exc 4 !#T)

(nrm !#T exc 8 !#F)))
(F (nrm !#T exc 10 !#F))
(S (cond [(and B F) (nrm !#T exc 3 !#F)]

[(and B (not F)) (nrm !#F exc 13 !#T)]
[(and (not B) F) (nrm !#F exc 11 !#T)]
[else (nrm !#F exc 27 !#T)])))

(list H B F S)))
(network)
=> Rank Value

0 (#F #T #T #T)
3 (#F #T #T #F)
8 (#F #F #T #F)
10 (#F #T #F #F)
... ...

Inference with this network can be modelled by adding ob-
servations. For example, the following expression returns the
ranking over S given that F is true. Note that third and
fourth are built-in Scheme functions returning the third and
fourth element of a list, i.e., the value of F and S, respectively.
($ !fourth (observe third (network)))
=> Rank Value

0 #T
3 #F

5.2 Boolean Circuit Diagnosis
Consider the boolean circuit shown in figure 3. We want to
know which malfunctioning gates are most likely responsible
when observing faulty behaviour of the circuit. This question
can be answered using the function circuit defined below.
(define (circuit i1 i2 i3 o)
($ !cdr
(observe
(lambda (x) (eq? (car x) o))
(rlet* ((N (nrm !#T exc 1 !#F))

(O1 (nrm !#T exc 1 !#F))
(O2 (nrm !#T exc 1 !#F))
(l1 (if N !(not i1) !#F))
(l2 (if O1 !(or l1 i2) !#F))
(out (if O2 !(or l2 i3) !#F)))

(list out N O1 O2)))))



The construction is again based on a ranked let expression.
Here, the variables N, O1 and O2 hold the unobservable state
of the gates (#T for good and #F for bad). Each gate is as-
sumed to fail independently and exceptionally. The variables
l1, l2 and out hold the state of the respective lines (#F for
low and #T for high). Their values depend on N, O1 and O2,
with a failing gate assumed to be stuck at low. The ranked let
expression returns a ranking over lists whose car is the com-
puted output and whose cdr is the corresponding diagnosis.
(Note that car and cdr are functions returning, respectively,
the head and tail of a list.) The enclosing observe expression
conditionalizes on the observed output, whle the enclosing
call to cdr extracts the diagnosis, which is a list containing
the inferred state of the gates N, O1 and O2 in that order.

Suppose we set i1 and i2 to low and i3 to high. If the cir-
cuit functions correctly then out should be high. However,
we observe that out is low. The least surprising explanation
is that O2 fails, as indicated by the rank 0 return value below.
Further return values represent more surprising explanations
that involve more than one failing gate.
(circuit #F #F #T #F)
=> Rank Value

0 (#T #T #F)
1 (#T #F #F)
1 (#F #T #F)
2 (#F #F #F)

5.3 A Ranked Hidden Markov Model
A Hidden Markov Model (HMM) defines a Markov process
whose state is observable only indirectly, through an ob-
servable random variable whose value is determined by the
state [Rabiner and Juang, 1986]. The main inference task is
to determine the sequence of states that best explains a se-
quence of values of the observable variable. They are typi-
cally based on probabilities, with transmission probabilities
used for state transitions, and emission probabilities for the
values that the observable variable takes on in each state.
Here we consider a ranked variant where these probabilities
are replaced by ranks, and discuss its implementation.

The function hmm defined below implements a generic
ranked HMM. It takes as input a sequence of observed values
and returns a ranking function over the inferred sequences of
states. To simplify the implementation we assume that both
input and output are encoded as lists in reverse temporal or-
der. It is assumed that the following functions, which encode
the structure and parameters of the HMM, are defined: init
(returns a ranking over initial states); trans (takes a state s
as input and returns a ranking over the successor states of s);
and emit (takes a state s as input and returns a ranking over
values of the observable variable in state s).
(define (hmm obs)
(if (empty? obs)
($ !list (init))
($ !cdr
(observe (lambda (x) (eq? (car x) (car obs)))

(rlet* ((p (hmm (cdr obs)))
(s (trans (car p)))
(o (emit s)))
(cons o (cons s p)))))))

The base case of this recursive function (obs is empty)
yields a ranking over one-element sequences containing the

i1

i2

i3

N O1 O2 out

l1 l2

Figure 3: A boolean circuit: one NOT gate and two OR gates.

Start

Rainy Sunny

Yes NoUmbrella

0 0
2

2
0 0

0
11

0

Figure 4: A ranking-based HMM. Solid arrows represent state tran-
sitions and dotted arrows represent emission ranks.

initial state. The recursive case is based on a ranked let
expression. First we determine recursively the sequence p
of states for the cdr of obs. Then we determine the new
state s and corresponding value o for the observed variable.
The ranked let expression yields a ranking over lists whose
car is a value for the observed variable and whose cdr
is the sequence of states leading to this value. The enclos-
ing observe expression conditionalizes on the observation,
while the ranked procedure call of cdr extracts correspond-
ing sequence of states.

A simple toy-example of a ranking-based HMM is shown
in Figure 4. The story is as follows: you are a software devel-
oper permanently locked in an office without windows. Each
day your boss walks in, and you want to infer the weather
based on whether he carries an umbrella. It is either rainy
or sunny (initially equally likely) and you assume that the
weather only exceptionally (to degree 2) changes overnight.
Furthermore you assume that, if it’s rainy, your boss normally
carries an umbrella and exceptionally (to degree 1) not, with
the situation reversed when it is sunny. This HMM is imple-
mented by the following definitions for the functions init,
trans and emit:
(define (init) (either !"rainy" or !"sunny"))
(define (trans s)
(case s
(("rainy") (nrm !"rainy" exc 2 !"sunny"))
(("sunny") (nrm !"sunny" exc 2 !"rainy"))))

(define (emit s)
(case s
(("rainy") (nrm !"yes" exc 1 !"no"))
(("sunny") (nrm !"no" exc 1 !"yes"))))

Suppose we make five observations and observe an umbrella
only once. Note that a change of weather is more surprising
(rank 2) than taking an umbrella on a sunny day (rank 1).
Thus, the least surprising sequence is sunny every day:
(hmm ‘("no" "no" "yes" "no" "no"))
=> Rank Value

0 (sunny sunny sunny sunny sunny sunny)
... ...



*:1 *:1 *:1 *:1 *:1

H:0 L:0 L:0 O:0 end:0
*:1 *:1 *:1 *:1

ε:1 ε:1 ε:1 ε:1

Figure 5: A ranked automaton.

Now suppose we observe an umbrella on the third, fourth and
fifth day. Because taking an umbrella on a sunny day three
times in a row is more surprising (rank 3) than a change of
weather (rank 2) we infer that the weather has changed:
(hmm ‘("yes" "yes" "yes" "no" "no"))
=> Rank Value

0 (rainy rainy rainy sunny sunny sunny)
... ...

5.4 Ranked Automata for Spelling Correction
Spelling correction algorithms often involve searching for
words that have a minimal Levenshtein distance to a given
input string. Here we describe such an algorithm based on
the idea of processing each character of an input string under
the assumption that the character is normally correct, but ex-
ceptionally incorrect, due either to an omission, substitution
or the insertion. The algorithm is based on what we call a
ranked automaton. We just saw that Bayesian networks and
HMMs can be adapted to use ranks instead of probabilities.
A ranked automaton is a similar adaptation of a probabilis-
tic automaton [Stoelinga, 2002]. It is defined like a nonde-
terministic finite automaton except that a transition between
states σ, σ′ takes the form σ

s:r−−→ σ′, where s is the generated
symbol and r is the rank of the transition. A ranked automa-
ton generates a string (s1, . . . , sn) with rank r if there is a
path σ s1:r1−−−→ . . .

sn:rn−−−→ σ′ between a starting state σ and
final state σ′ such that r =

∑n
i=1 ri.

For a given input string we can construct a ranked automa-
ton that generates all potential corrections, ranked according
to Levenshtein distance. Figure 5 shows an instance of such
an automaton for the string “HLLO”. Here, the symbol ∗ de-
notes an arbitrary character, and ε denotes the empty sym-
bol. This automaton generates the string “HLLO” with rank
0, while “H*LLO” and “H*LO”, which match the possible
corrections “HELLO” and “HALO”, are generated with rank
1, which equals their Levenshtein distance to “HLLO”. To
build a spelling correction algorithm based on this principle
we first encode the automaton for a given input string:
(define (gen input)
(if (empty? input)
!‘()
(nrm ($ !cons !(car input) (gen (cdr input)))
exc 1 (either (gen (cdr input))

or ($ !cons !"*" (gen (cdr input)))
or ($ !cons !"*" (gen input))))))

(gen (string->list "hllo"))
=> Rank Value

0 (h l l o)
... ...
1 (h * l l o)
1 (h * l o)
... ...

Now suppose we have a list dict at our disposal that con-
tains all possible words, and a function match that takes a

string S as input and returns a list containing the words from
dict that match S, with * acting as a wildcard. The func-
tion correct defined below returns a list of corrections for
an input string, ranked according to Levenshtein distance.

(define (correct input)
($ !match
(observe
(lambda (x) (not (empty? (match x))))
(gen (string->list input)))))

(correct "hllo")
=> Rank Value

0 ("hello")
0 ("halo")
... ...

Efficiency can be improved by ruling out intermediate results
not matching any prefix of a word in the dictionary. This can
be done by adding a conditionalization step to gen.

6 Discussion and Conclusion
Probability is arguably the gold standard when it comes to
representing uncertainty in AI. There are, however, problems
which involve uncertainty of a different nature. We focus on
the case where we know what is normal and what is excep-
tional, but where the probabilistic meaning of these terms is
unknown or irrelevant. A suitable formalism to reason under
this type of uncertainty is ranking theory. We have applied
the methodology of PPLs to ranking theory, and developed
a programming language aimed at building models involving
uncertainty of this kind and performing inference on them.

The application of ranking theory in AI is not new. It
has been used as a theoretical basis for belief revision and
nonmonotonic reasoning [Pearl, 1990; Goldszmidt and Pearl,
1996; Darwiche and Pearl, 1996; Kern-Isberner, 2001]. Our
work is based on the idea that ranking theory can be used
as a general tool—like probability theory—to build arbitrary
models involving uncertainty. The ranked programming ap-
proach makes it easy to build such models, and thus paves the
way for new applications of ranking theory.

Besides ranking theory, there are other alternatives to prob-
ability theory. These include Dempster-Shafer functions,
possibility measures, and plausibility measures (see [Halpern,
2017] for an overview and comparison, which includes rank-
ing theory). Possibility measures measure uncertainty on an
arbitrary totally ordered scale, such as the integer scale from
0 to∞ (making them equivalent to ranking functions) or real
numbers from the interval [0, 1]. The latter is often chosen
to model vagueness or fuzziness. Possibility theory has been
used to equip logic programming and answer set program-
ming with the ability to deal with uncertainty [Nicolas et al.,
2006; Bauters et al., 2010; Alsinet and Godo, 2000].

As a final remark we note that ranked programming
generalises nondeterministic programming. For example,
if we distinguish only finite from infinite ranks, ranked
choice and observation in Ranked Scheme work like the amb
and require statements discussed in [Abelson et al., 1985].
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